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ABSTRACT

Subword Spotting and Its Applications

Brian Lafayette Davis
Department of Computer Science, BYU

Master of Science

We propose subword spotting, a generalization of word spotting where the search is
for groups of characters within words. We present a method for performing subword spotting
based on state-of-the-art word spotting techniques and evaluate its performance at three
granularitires (unigrams, bigrams and trigrams) on two datasets.

We demonstrate three applications of subword spotting, though others may exist. The
first is assisting human transcribers identify unrecognized characters by locating them in other
words. The second is searching for suffixes directly in word images (suffix spotting). And
the third is computer assisted transcription (semi-automated transcription). We investigate
several variations of computer assisted transcription using subword spotting, but none achieve
transcription speeds above manual transcription. We investigate the causes.

Keywords: subword, spotting, CAT, semi-automated, handwriting, n-gram, character
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Chapter 1

Introduction

Most data recorded by humans in the past, and much even today, is in handwritten

documents. It is highly desirable for many areas of research for this information to be easily

accessible, either being searchable through automatic means or having the data digitized in

some form that is easily manipulated by computers.

The digitization of these documents is a large task. Obviously not all recorded data is

important, but even within a specific domain, the number of relevant handwritten documents

can be far too large to be manually transcribed to digital text (that is, a human reads

the document and then types the contents into a computer). Within the domain of family

history research, for example, there are billions of handwritten documents which have been

photographed as digital images and more are being captured every day. The transcription of

these lags far behind, and the gap is growing. It is expensive to have the contents of these

documents manually typed by people.

A solution to the problem of transcribing documents that has been worked on for

several decades is automated handwriting recognition. The basic formulation is that given

an image of handwriting (either a character, word, line, paragraph or page), automatically

produce the text of its handwritten content. The state-of-the art is primarily focused on the

transcription of text lines and paragraphs through artificial neural networks, particularly

recursive neural networks (RNN) [25, 26, 35]. These methods work relatively well, particularly

in single author scenarios. However, they do require large training sets and would require

human correction in some difficult applications where human-level accuracy is required.

1
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Figure 1.1: Examples of word spotting for ‘pay’ and ‘payment’.

Figure 1.2: Examples of subword spotting for the character trigram ‘pay’ (left, red) and
bigram ‘pa’ (right, yellow).

Computer assisted transcription (CAT), or semi-automated transcription, is an ap-

proach to transcription which begins with the understanding that human input will be needed

to achieve the desired accuracy and aims to merge computed and human effort in an effective

manner. These methods have generated less interest recently due to the large gains deep

convolutional neural networks have given automatic transcription.

However, transcription is not always needed; if search is the only utility desired an

alternative solution is word spotting [14]. In word spotting, the goal is to make a collection

of document images searchable without transcription. The search results are based on visual

features the system extracts. The result of word spotting is the location, and potentially

bounding box, of each instance of the query in the corpus (see Figure 1.1).

In this work, subword spotting is explored. Where word spotting finds words matching

a query, subword spotting relaxes this to finding any instances of the query, even within a

word. As seen in Figure 1.2 (left, red), an additional instance of “pay” is found compared to

Figure 1.1. And in Figure 1.2 (right, yellow), an additional instance of “pa” is found, which

turns out to be a different form of the word“pay.”

2
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Figure 1.3: Cropped examples of the characters “e” and “i” (excluding dots), on the left
and right respectively, from a single author. Without context the characters are practically
indistinguishable.

1.1 Why Subword Spotting?

The motivation for exploring subword spotting comes from the observation that techniques

for handwriting recognition have tried many different primitives, or fundamental units, for

recognition. One can look at pixels at the lowest level, and then move onto graphemes or

substrokes [13], strokes, characters, subwords (or character n-grams), words and sentences.

With current neural networks, the primitives are learned within the stacked convolutional

layers, and the network then recognizes characters based on these. Previous CAT systems

such as [5] and [37] use whole words as units for recognition.

An individual primitive has two desirable properties: distinctiveness and frequency.

Without distinctiveness it will be very difficult to discriminate between different primitive

instances. Frequency is valuable as it allows us to get more out of the effort required to

discriminate.

Subwords provide an interesting middle ground between individual characters and

complete words. Individual characters can be very similar to one another (i.e. not distinctive).

For example, in cursive an “i” missing it’s dot frequently looks like an “e”, as seen in

Figure 1.3, making discriminating between characters in isolation very difficult. On the other

hand, words are generally much more distinctive than characters. However, while individual

characters occur many times throughout a corpus, a given word may appear less frequently.
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In the extreme, words such as names, may occur only once. However, subwords, such as “th”,

“ed”, “ion”, “ing”, etc., occur very frequently (in English) as they are used in many words.

And while being more frequent than words, subwords also provide more distinctiveness and

discernibility than individual characters.

Important use cases for subword spotting include searches (1) where a root is desired

to be searched, such as querying “pay” wanting to find instances of “payment”, “payments”,

“prepay”, etc., (2) where only part of the desired word, such as a name, is known, such as

“Chr.”, (3) where there are character(s) which a human transcriber cannot initially recognize,

but if instances elsewhere in the document in familiar words could be found in context, would

become discernible to the transcriber.

An additional appeal of subword spotting lies in computer assisted transcription

(CAT). In character-level recognition schemes, a lexicon is frequently used to correct erroneous

character predictions if other characters in the word are transcribed correctly. Similarly

a lexicon can also be used to fill in untranscribed characters, assuming significant other

characters are transcribed. This is useful in a transcription by iteratively spotting subwords.

While the spotting results may not cover every character, they can cover a sufficient number

of characters for each particular word.

In Figure 1.4 we see an example of the word “payment”, where “pa” and “men” have

been spotted; this covers 71% of the characters in the word. However, if we estimate that

there are 1-2 characters between “pa” and “men” and estimate 1-2 characters after “men”

the regular expression pa..?men..? matches only “pavement”, “pavements”, “payment”,

and “payments” in our large lexicon (described in Chapter 3). This is a particularly potent

tool with longer words, which typically may require more effort to automatically transcribe,

but tend to be more distinctive from a lexical perspective.
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Figure 1.4: An example of a word having “pa” and “men” spotted in it. A regular expression
representing this, pa..?men..?, yields only a few matches from our lexicon, including the
correct one: “pavement”, “pavements”, “payment”, and “payments.”

1.2 Main Contributions

The primary scope of this work is to provide an exploration of the performance of subword

spotting, extending state-of-the-art word spotting methods. We show that reasonable levels

of mean average precision (mAP) can be achieved for character tri-, bi-, and unigram spotting.

We demonstrate the variability in performance between different character n-grams (referred

to simply as n-grams hereafter).

Additionally, we demonstrate several applications of subword spotting: user directed

searching to aid in human transcription, suffix searching/spotting, and CAT using word

completion from aggregated subword spottings.
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Chapter 2

Related Work

2.1 Word Spotting

Word spotting was first proposed as an alternative to transcribing a corpus. Rather than

transcribing the document image so standard text searches can be run, the document is

searched using the images themselves, either with a keyword string or a keyword image

(exemplar image). In the past, techniques were distinguished by which search pattern they

used. There are two primary approaches to featurizing the images when word spotting is

performed: holistic features, that capture information about a whole image (word), and

local or sequential features [22]. Holistic features have one description for an entire word

image (such as a bag-of-visual-words [29]), whereas local features have a descriptor for a

small portion, or window, of a word image.

Most early work with local features share the common theme of taking features from

vertical slice windows (usually only one or a handful of pixels wide); Figure 2.1 shows an

example of this process. They compare these to the features extracted from an exemplar

using either dynamic time warping or hidden Markov models (HMMs), relying on a prior line

segmentation. The variation between the methods largely lies in the features used. Some use

small square windows to allow segmentation-free word spotting using a sliding window [24].

Rodrıguez et al. [22] proposed a simple histogram gradient feature that demonstrated

improved performance when compared with (1) the popular profile and transition-based

features of Rath and Manmantha [19], (2) the gradient and transition-focused features of

Marti and Bunke [16] and (3) the simple histogram features of Bunke et al. [4]. They also
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Figure 2.1: Example of how vertical slice window features are extracted. Typically most
features are extracted on a binarized image (a). Deskewing the image (b) plays an important
role as the vertical slices are very sensitive to skew. Many typical features extracted (c) are
pixel counts; in this example we show count features dependent on baselines (blue).

showed that a HMM worked better than dynamic time warping, for their features. Their

method was not an exemplar-based approach.

Aldavert et al. [1] and Almazan et al. [3] have presented superior word spotting

methods that rely on heuristic descriptions. Aldavert et al. used the well known bag-of-

visual-words method, including recent improvements from the computer vision community.

This is a very simple, yet effective, exemplar spotting approach. Aldavert et al. use Fischer

vectors, which are similar to bag-of-visual-words, with spatial pyramids in addition to a

special pyramidal histogram of characters (PHOC). PHOC vectors are a fixed length vector

which describe a word; it encodes which characters are present and roughly their location.

If your alphabet is length N , the first N values of the vector indicate if each character is

present in the word (Is ‘a’ in the word? Is ‘b’ in the word?). The next N values indicate
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Figure 2.2: Example of a three-level PHOC vector for the word “face.” The final vector is all
levels appended together. Note that partial values are given when characters are split over
bins.

if each character is present in the first half of the word, the N values after that indicating

presence in the second half of the word (this is the rough location encoding). This is carried

out to three levels. In the original PHOC a set of character bigrams are also used on the

first two levels, however, we do not use these. See Figure 2.2 for clarification. The PHOC

vector and pyramidal bag-of-visual-words are used to find a new space in training in which

both strings and word images can be embedded. This allows it to perform both string and

exemplar queries as well as hybrid queries which yield excellent results.

Sudholt and Fink [30, 31] expanded on [3] by training a deep convolutional neural

network to produce the PHOC vector from a word image. This, and following improvements

[12, 21], have yielded the state-of-the-art for segmentation-based spotting. We base our

spotting method on [31].

There are also techniques for segmentation-free word spotting, where spotting is

performed on a full page without any segmentation information [36]. While we used word

image segmentation in our work to narrow its scope, we note that it could be applied, with

some adjustments, in a segmentation-free setting.

In this thesis we are interested in spotting character n-grams (uni-, bi- and trigrams)

rather than words. While this hasn’t explicitly been done, we feel examining the performance
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of other methods on short words (2 to 3 letters) is instructive. For Rothacker et al.’s [24]

segmentation-free HMM based method, they report ∼46% and ∼55% mean Average Precision

(mAP) for two- and three-lettered words respectively, a drop by ∼15% and ∼6% from the

mAP for all words they tested (61%). Fischer et al. [6] report ∼70% and ∼83% mAP for two

and three lettered words, compared to >90% mAP for words of length 5 or longer, for their

line segmentation dependent, character HMM based method. While neither of these numbers

are very promising, Almazan et al. [2] observe that sliding window approaches can frequently

find false positives of short words inside other words (e.g. finding the word “the” inside the

word “weather”). As this is precisely what we want to have happen in n-gram spotting (that

is, we want to find groups of letters in the middle of words), we expect we should have more

success spotting character n-grams than other methods in spotting short words, assuming we

have good sliding windows. However, part of the poor accuracy in spotting short words is

simply the fact that there is less information with which to discriminate.

2.2 Automatic Handwriting Recognition

The state-of-the-art for handwriting recognition relies heavily on recursive neural networks

(RNNs) paired with convolutional neural networks (CNNs). The key component is the

connectionist temporal classification (CTC) loss which allows the network to be trained given

a line image and the ground truth text for that line without any alignment [8]. In a recent

competition on historical German documents [26] (see Figure 2.3), the leading contestants

Figure 2.3: Example of lines extracted from the dataset of the ICDAR HTR competition [26].
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used a bidirectional RNN on top of a CNN. The best results had word error rates of 19.1%

and character error rates of 7.0%. This is impressively low given the diversity of the data,

and deep learning methods are continuing to improve [18, 35].

2.3 Computer Assisted Transcription

There tends to be two primary CAT (Computer Assisted Transcription) methodologies:

corrective and directive. Corrective CAT methods rely on handwriting recognition to do

most of the work, and then users provide feedback correcting some errors of the recognition,

where the gain comes from other errors being automatically corrected or being assisted so

that corrections are easier to make.

In a directive CAT method, the user provides some of the initial input to the system

and it uses this to transcribe more than what the user inputted. An active learning approach

to handwriting transcription is similar to CAT, but is not concerned about achieving human

level accuracy, just better accuracy, and thus requires less human involvement [27]. We will

focus on CAT approaches.

Toselli et al. [33] have explored the realm of corrective CAT using the idea of user-

verified prefixes. They use a fairly standard HMM recognition model as the backbone of their

approach, and take advantage of the incremental nature of the Viterbi decoding algorithm.

The recognition is done for a line of text and the user corrects the first error. The Viterbi

decoding is then run again, but this time using the assumption that everything occurring

before the correction is correct, and thus reusing the computation up to that point. They

have also explored slight variations of the same approach that enable more fluent user input

with a touchpad [34], mouse [23], or multimodal means [32], which speed up the transcription

process by allowing more intuitive user interaction (Fig. 2.4). Their approach relies on a

language model to make corrections on a line when a supervision is made. This means this

method cannot be used to effectively transcribe documents containing non-sentence writing,
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Figure 2.4: A screenshot of a demo of Toselli et al’s multimodal CAT system. The red line
is drawn by the user to indicate the need to insert a word into the automatically obtained
transcription.

such as tables and lists. Serrano, et al. also have pursued a similar approach, where the user

corrects the n words in which the recognition model had the least confidence [28].

While it is useful to employ an automatic handwriting recognition method as part of

a CAT approach to reduce the human burden, we cannot use the same type of recognition

used by these previous CAT systems, where there is a reliance on the predictive capacity of

a language model. Some documents are not comprised of only sentences, and thus cannot

be transcribed by these methods (e.g. the name field of census documents, see Figure 2.5).

However, many documents are structured such that a pattern can be learned to assist in

transcription.

Robert Clawson [5]1 designed a CAT system for handwritten tabular documents, which

have a clear pattern. His approach relies on simply finding matches in the document column

of the current word image (red box in Figure 2.5(a). This is essentially query by example

word spotting with user oversight. The matched words are assigned the same user-specified

label. This provides an accurate CAT system where the user oversees all transcription. The

user oversight of matches is accomplished by showing a list of matches to the user (with an

adjustable threshold for sensitivity) from which the user removes the false-positive matches.

The remaining all have the same label applied to them. This interface, discarding bad

1You can view a short demo and explanation of his approach at https://www.youtube.com/watch?v=
gqdVzEPnBEw
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(a) The red box indicates the current word. A
small window shows the matching words that
appear elsewhere in the column. The user can
get rid of bad matches by either clicking on
them or adjusting a threshold.

(b) The matched words, highlighted in yellow,
are all assigned the same user-entered label.

Figure 2.5: Clawson’s CAT system for tabular documents.

matches, leverages the human user’s natural ability to quickly identify outliers. Our CAT

attempts to also leverage this ability as well.

Zagoris et al. [37] 2 presented a CAT system that was also based on word spotting.

In their system when the user is transcribing a word image, they are presented with the

results of spotting that image (sorted according to rank). The user can then confirm these

spottings by clicking on them, causing them to move to a separate list. When this is done,

a relevance feedback loop is activated, which submits another word spotting query of the

confirmed image. These spotting results are used to refine the ranked list, providing a better

selection. Figure 2.6 shows a screen-shot of their demo system. We use the same strategy as

[37] to guide the combination of our subword spotting results from multiple queries. Further

details are given in Section 4.1.5.

Neudecker and Tzadok [17] presented a CAT system for historical printed documents

that is very similar to the CAT system we present in Chapter 6. The system would first

segment the individual characters of the documents and run an OCR engine on them. Those

characters with low confidence would then be presented to a user for verification in a character

2A demo of their system is found at http://vc.ee.duth.gr/ws/
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Figure 2.6: A screen-shot of a the CAT system of Zagoris et al. [37]. The green text indicates
hand labeling, the blue text indicates automatic labeling. You can see to the right of the
current word (“must”) the current ranked list of spottings (blue boxes).

session. A single character session contains all the low-confidence character images classified

to a single character. An example of their system’s character session for the character “?”

is given in Fig. 2.7. The user merely needs to select the incorrect classifications. Then in a

word session, a word image is shown to the user with possible transcriptions for the word,

from which they select the correct one. There are three key strengths of this system. One is

that as long as the documents characters can be segmented, it can work. The second is that

it formats all user tasks as selections, rather than typing, and they are quickly completed.

This creates a much more enjoyable experience for the user. The third key strength is that it

is highly parallelizable for crowd-sourced transcribing. This parallelism is achieved because

all character sessions are independent of one another and all word sessions are independent

of one another. Our system follows this method’s pattern so it has flexibility of document

types, simple user tasks and a parallelizable framework.

Retsinas et al. [20] expanded on [17] to reduce the amount of user input required by

clustering character images together. By viewing an average of a character cluster (where

the characters are overlapped), the user can then assign the whole cluster a character label

or reject the cluster as being incoherent (i.e. the cluster contains multiple characters). See
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Figure 2.7: A screen-shot of a character session for “?” from Neudecker and Tzadok’s CAT
system [17], taken directly from their report [17]. Notice how easy it is for a user to simply
click on the erroneous classifications.

Figure 2.8 for an example. Though requiring more thought from the user, this prevents

the tediousness of examining all character images. We attempt to use clustering in our

own CAT method, however we cannot perform the overlap due to the greater variance in

handwriting. Instead we take the approach of [5] and simply group clusters together to help

visual discrimination.

While we have not seen it done, it would be relatively easy to transfer the results of

RNN/CTC-based automatic transcription method to CAT by extracting the top-N transcrip-

Figure 2.8: Examples of a good cluster (‘c’) and an incoherent cluster (multiple character
classes) taken from [20].
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tions from the network output. These could then be fed to a user for approval and quick

correction for most errors. Given the strength of these automatic methods by themselves, we

expect a CAT version of them would outperform the older CAT methods discussed in this

section.
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Chapter 3

Datasets

We use three datasets in our evaluations: the IAM handwriting dataset, the Bentham

dataset, and a dataset we extracted from the U.S. 1930 census, which we refer to as Census

Names. In this chapter we describe each of these datasets and additionally describe our

lexicon.

3.1 IAM Dataset

The IAM handwriting dataset [15] is a dataset collected by having human subjects copy

certain paragraphs of printed text into handwriting. They were instructed to keep lines well

separated and the dataset is very clean as a result. It contains annotations to the word

level. We used the provided test set split, the combine training and validation 2 splits as

our training set, and the validation 1 set as our validation set. Example lines from the IAM

dataset can be seen in Figure 3.1. The test set has 96.1% of its contents in our lexicon. These

sets have the respective sizes and number of (exclusive) authors:

Training: 55106 words, 326 authors

Validation: 7089 words, 46 authors

Testing: 14600 words, 128 authors

3.2 Bentham Dataset

The Bentham dataset [7] is a collection of documents written by the 17th century philosopher

Jeremy Bentham. While our data is based on the officially released ground truth labels and
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Figure 3.1: Examples of lines from the IAM dataset.

Figure 3.2: Excerpts from the Bentham dataset.
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bounding boxes, we have corrected a plethora of errors. Our training, validation, and test

sets are based on the official split, but are not identical. We ensured pages are exclusive to a

single set. Example lines from the Bentham dataset can be seen in Figure 3.2. The test set

has 94.9% of its contents in our lexicon These sets have the respective sizes:

Training: 8490 words

Validation: 1071 words

Testing: 860 words

3.3 Census Names Dataset

The Census Names dataset is an extraction of names from the United Stated of America

1930 census. Example lines from the Census Names dataset can be seen in Figure 3.4.

FamilySearch provided us the ground truth index as well as a registration of the form images

(rotation, scale and offset to align them). We locate the bounding boxes of the name fields

by the following process:

1. Average the registered images (Figure 3.3 a).

2. Manually enhance the contrast of the resulting image (Figure 3.3 b).

3. Hand annotate the average image with the lines of the form, using straight lines (Figure

3.3 c).

4. For each form image perform a more refined registration

(a) Globally move all the form lines together to maximize the summed inverse pixel

intensity (darker is better) along the form lines. This is done by scanning 50 pixels

in the four cardinal directions separately (Figure 3.3 d).

(b) Do a more dense scan of all positions in a 7×7 neighborhood around the combined

the best x and y positions from the separate horizontal and vertical scans (previous

step).
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(c) For each individual cell of the form, create a small (12 pixel) vertical or horizontal

profile around each of the four lines forming the cell boundaries (Figure 3.3 e)

(d) Locally snap each cell wall to the darkest part of it’s respective profile (Figure 3.3

f). This yields a very precise registration in most cases.

(e) Manually segment the words (last name, first name, middle initial/name) within

each cell (Figure 3.3 g).

The test set has 83.7% of its contents in our lexicon These sets have the respective sizes:

Training: 6292 words

Validation: 718 words

Testing: 2130 words

3.4 Character Annotation

For the testing portion and a small validation set of the Bentham and Census Names datasets,

we produced a character segmentation ground truth. We annotated the word segmentation

ground truth by marking the point between characters, meaning character boundaries do not

overlap, in addition to a tighter start and end boundary for the word (first and last letters),

as seen in Figure 3.5.

3.5 Lexicon

For our CAT (computer assisted transcription) methods, we require a lexicon. We choose to

use a large English lexicon as this would indicate the methods could generalize to other corpi.

We obtained a lexicon from SIL International at http://www-01.sil.org/linguistics/

wordlists/english/ which contained 108,028 words (not including names). We also desired

a large lexicon of names which would enable the Census Names dataset to be transcribed.

FamilySearch provided us with data from the US 1940 census, which listed all names appearing

in those records along with a count of how many times they occurred. We took all names
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Figure 3.3: Process for extracting names from US 1930 census forms for Census Names
data set. We begin with registered forms (a). Then we average the images together (b).
The average image is used to mark form boundaries manually (c). The lines are registered
to specific census image (d). At each cell a projection profile is computed around the cell
boundaries (dark blue) (e). The cell boundaries are snapped to the histogram peaks (f).
Word boundaries were manually annotated for each cell (g).
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Figure 3.4: Excerpts from the Census Names dataset.

Figure 3.5: Example of hand annotated character segmentation.
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occuring at least 1000 times, leaving us with a list of 6,939 unique names. Combining these

two sets gave us a lexicon size of 114,968. We use the full lexicon for the Bentham dataset,

but only the names portion for the Census Names dataset.
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Chapter 4

Subword Spotting

Subword spotting is an extension of traditional word spotting where we allow instances

to occur within words. We attempt to localize the spotting in the word to provide spatial

information. In this work we focus on small subwords (1-3 characters), as most of the

applications of subword spotting we explore in Chapters 5 and 6 use these. Figure 1.2 shows

an example subword spotting.

In this chapter we describe our implementation of subword spotting and then evaluate

many aspects of its performance, including full word, uni-, bi-, and trigram spotting as well

as multi-query aggregation.

4.1 Implementation

We use a sliding window over word images with a word spotting CNN to perform subword

spotting.

4.1.1 Architecture

Our subword spotting is built on the segmentation-based word spotting method PHOCNet

[30, 31] which we adapted to perform a sliding window over the word images. [31] uses a

deep convolutional network trained on word images with pyramidal histogram of characters

(PHOC) [3] as the target vectors. This method can word spot using both query-by-string

(QbS) and query-by-example (QbE), that is a query may be a text word or a word image.

Searches are performed simply by comparing vector similarities, the query vector either being
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Figure 4.1: Network architecture for embedding images as PHOC vectors. The numbers
beneath each layer represent the number of channels. As the network uses temporal pyramid
pooling before the fully connected layers, it can accept images of any size. Our architecture
differs from [31] only in the number of channels of the last convolutional layer.

a word’s PHOC vector if searching with text or found from running its image through the

network. See Section 2.1 for the details of PHOC vectors. We follow [31] and use a PHOC

vector where the alphabet is case insensitive, includes digits (0-9), and does not include

bigrams (unlike [3] which uses bigrams in the first two layers). For our specific application

of subword spotting, we try adapting the PHOC vector in [31] so instead of having levels

2,3,4,5 we have 1,2,3. [31] was designed for words which require more spatial resolution than

subwords. Our PHOC levels directly correspond with the fact that we are spotting uni-, bi-

and trigrams. We refer to this as our “adapted PHOC” in the results.

Our network architecture varies slightly from [31] and is outlined in Figure 4.1. We

note the reduction in the number of channels in the layer before the temporal pyramid pooling

(TPP) and fully connected layers (from 512 to 128); this is to reduce the size of featurized

images (which are saved after this layer). We used Sudholts’s code available on GitHub

(https://github.com/ssudholt/phocnet), which uses the Caffe framework [10].

TPP is a slight modification of spatial pyramid pooling (SPP) [9], which is a method

of allowing a network with fully connected layers to handle images of arbitrary size. This

is accomplished by performing a pooling (max in our implementation) over windows of the

feature map (image). The first level is a window that encompasses the full image. The second

level is four windows dividing the image into fourths (each the size of half the image width
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Figure 4.2: What temporal pyramid pooling (TPP) looks like visually. The same network
features (large blocks) is divided into even horizontal windows of different counts (1,2,3,4,5
here). The result of pooling each of these windows (max pooling in our implementation) is
appended together as an output vector. This is the red vector in Figure 4.1.
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and half the image height). The proceeding levels follow a similar pattern. TPP uses the

same idea, but only divides windows horizontally as vertical information is not useful once

word images are featurized. We use 5 layers (dividing the image into 1, 2, 3, 4, and 5 even

windows). Figure 4.2 shows what TPP looks like visually. We modify TPP slightly to handle

the corner case of small images such that the windows are adjusted to be slightly overlapping

at a particular level if a window had a width of zero at that level.

4.1.2 Training

Training follows a procedure based on [31] where word images are passed through to the

network and the loss is computed against the ground truth PHOC using cross-entropy. We

used a batch size of 10 words, a learning rate of 10−4, a weight decay of 0.00005, and the

Adam optimizer [11]. We train the model out 240,000 iterations, dropping the learning rate

by a factor of 10 for the last 10,000 iterations. We note that the model does not appear to

overfit, but improvements at this point in training are minimal.

We use the same data augmentation as [31], which consists of balancing the training

set according to word occurances (by their text) and distorting duplicate instances with

random affine transformations.

4.1.3 Determining Window Widths

Because the neural network takes in some context, it is difficult to measure what the optimal

sliding window size should be, based on visual width. Additionally each n-gram is likely

to have a different optimal window size. We determine the optimal window size for each

n-gram as follows. We first compute the mAP for a range of window sizes (stepping 4 pixels),

smoothing these results and taking the max. We smooth by averaging a window of 3 steps

(average mAP from 3 window sizes), using 2 steps on the edges. For efficiency we cluster all

the resulting window sizes (from each n-gram) into 10 clusters using k-means, assigning each
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n-gram the cluster mean as its width. This allows us to pre-compute PHOC vectors of only

10 window sizes.

We note that refining the window size during spotting to maximize the score for a

specific word image does not give improvements overall.

Our optimal sizes are reported in the Appendix in Table 9.1.

4.1.4 Running

To prepare for spotting, we save the output of the network before the TPP layer as a

featurization of each word image. Then subwindows of this featurization can be passed to

the latter part of the network (starting with TPP) to generate a PHOC vector. As part of

the preprocessing we extract PHOC vectors for subwindows with a stride of 4 pixels (step

of 1 in the featurized image as the network reduces images by a factor of 4) for the 10 sizes

determined using the method in the previous section.

[31] uses a cosine similarity to compare PHOC vectors (both string and network

generated). We used this, but also tested other comparison methods and found that for string

generated PHOC vectors, using cross-entropy performs better. This is what the network is

optimizing, and as the training labels are string generated PHOC vectors it follows that this

should perform well. The query vectors for network generated vectors (QbE queries) are

noisy and appear very different. We also found improvements by masking out irrelevant levels

of the PHOC for the given n-gram being spotted. For unigram spotting we only use level 1,

for bigrams levels 1,2 and for trigrams levels 1,3. This masked-cross-entropy comparison is

the measure we use for QbS and we use cosine similarity for QbE.

4.1.5 Combining QbE Results

In one of our tests, we perform aggregation of QbE results by merging results from different

queries. To do this we check for potentially overlapping spottings between two sets of results,

where overlap is defined as when the predicted bounding boxes overlap by at least 20%. If
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IAM Bentham Census Names
Method QbS QbE QbS QbE QbS QbE
Our network 0.892 0.833 0.926 0.971 0.758 0.858
Our network adapted PHOC 0.868 0.809 0.935 0.975 0.755 0.864
PHOCNet[30] 0.830 0.725 - - - -
TPP-PHOCNet[31] 0.934 0.827 - - - -

Table 4.1: mAP for full word spotting results, reported for both query-by-string (QbS) and
query-by-example (QbE).

there is an overlap we discard the result with the worse score. This can trivially be repeated

for multiple queries as we are essentially finding the max score. Merging by taking the

better score follows what [37] found to be most effective when combining full word spotting

results. As further justification, one can think of each n-gram or word as having several

prototypical ways it can appear (e.g. an ‘a’ appearing with or without the tail on top, ‘a’ or

‘a’). By selecting the best score you select the score computed on the exemplar image with

the prototype closest to the instance of interest’s prototype.

4.2 Analysis of Subword Spotting

In this section we present results of testing the subword spotting method described above. As

a baseline, we show our network’s performance on full word spotting. We evaluate subword

spotting of unigrams, bigrams and trigrams against our testing portions of the Bentham

dataset and Census Names dataset.

4.2.1 Full Word Spotting

Full word spotting is performed as described in [30], where the neural network is used to

generate a PHOC vector of each word image in the corpus. For QbS, each word (string) in

the corpus’s PHOC representation is used as a query. For QbE, each image which has at

least one of image with the same label is used as a query. We compare using mean average

precision (mAP). Our results are shown in Table 4.1 for the Bentham dataset, the Census

Names dataset, and, for comparison with PHOCNet [30, 31], the IAM dataset.
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It can be seen that we underperform compared to [31]. This is to be expected as

we have reduced the number of parameters in the CNN model. The adapted PHOC vector

performs variably when compared to the original, performing better in some cases. This is

surprising as we have reduced its descriptive power for words longer than three characters. It

may be that the reduced description was easier for our reduced network to learn.

As a note, it is not always meaningful to compare QbS scores to QbE scores, as QbS

represents a mean over text queries, one for each possible word label, and QbE represents

a mean over instance queries, one for each instance of a word in the dataset, meaning it is

biased towards the performance of common words (or n-grams in later tests).

4.2.2 Subword Spotting

We use our sliding window method to evaluate spotting uni-, bi- and trigrams. We used our

ground truth for the testing portion of the Bentham and Census Names datasets which have

character boundaries. We considered a spotting to be correct if its window overlapped with

the desired n-gram’s boundaries by 0.5 of the smallest of the two’s boundaries. We spotted

each letter of the alphabet, the 100 most frequent bigrams (in the English language), and the

300 most frequent trigrams. Each of these n-grams were spotted using QbS if there was at

least one instance of it in the testing set. All examples of these n-grams in the dataset were

used as a QbE query if there were at least two instances of the n-gram in the test set.

Owing to the fact that a single word may have multiple instances of an n-gram, we

align the spotting results to their nearest instance. If multiple spottings claim the same

instance and are both overlapping enough to be considered a positive match, we only keep

the one overlapping the most. If an n-gram instance is not claimed by any spotting, we add a

pseudo-result with the maximum spotting score to the mAP calculations to ensure it properly

reflects the missed n-gram.

Results can be seen in Table 4.2. Some qualitative results are show in Figures 4.3 and

4.4 for the Bentham and Census Names datasets respectively.
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Bentham Census Names
QbS QbE QbS QbE

Original PHOC using cosine similarity
Unigram 0.654 0.511 0.480 0.340

Bigram 0.549 0.569 0.375 0.294
Trigram 0.522 0.571 0.271 0.285

Adapted PHOC using cross entropy
Unigram 0.677 0.327 0.497 0.203

Bigram 0.682 0.426 0.402 0.179
Trigram 0.705 0.441 0.363 0.170

Table 4.2: mAP for subword spotting results on the Bentham and Census Names datasets,
reported for query-by-string (QbS), and query-by-example (QbE).

PHOC [31] Adapted PHOC
Cosine CE Masked CE Cosine CE Masked cosine Masked CE

QbS
Unigram 0.654 0.608 0.654 0.678 0.677 0.499 0.570
Bigram 0.549 0.641 0.679 0.643 0.682 0.571 0.663
Trigram 0.522 0.560 0.612 0.618 0.705 0.586 0.697

QbE
Unigram 0.511 0.338 0.321 0.547 0.329 0.296 0.717
Bigram 0.569 0.429 0.425 0.465 0.426 0.435 0.605
Trigram 0.571 0.449 0.431 0.467 0.441 0.497 0.563

Table 4.3: mAP for subword spotting results on the Bentham dataset using cosine similarity
and cross-entropy (CE) similarity and networks trained with the PHOC used in [31] and an
adapted PHOC for subword spotting. In some experiments parts of the PHOC vectors were
masked which were uninformative to the given task.
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Figure 4.3: Qualitative results for QbS subword spotting on the Bentham Dataset. Spottings
show the top results for the various n-gram queries. We selected some of the better n-grams
(‘s’, ‘th’, ‘but’) and worse n-grams (‘j’, ‘et’, ‘tin’) by mAP. Red boxes indicate incorrect
spottings.
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Figure 4.4: Qualitative results for QbS subword spotting on the Census Names Dataset.
Spottings show the top results for the various n-gram queries. We selected some of the
better n-grams (‘i’, ‘el’, ‘int’) and worse n-grams (‘v’, ‘ts’, ‘pre’) by mAP. Red boxes indicate
incorrect spottings.
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In Table 4.3 we show a comparison of using cosine similarity and cross-entropy (CE)

for PHOC vector comparison using both the original and adapted PHOC vectors. We also

show the effect of masking the PHOC vector, where divisions of the word which do not divide

evenly with the number of characters being spotted are masked out (e.g. division of thirds is

masked for spotting bigrams). For QbS, using cross-entropy shows a large improvement over

cosine similarity, but cosine similarity always out performs in QbE.

We note that for QbS the relative performance of unigrams, bigrams, and trigrams

is reversed for the Census Names dataset. This occurs because of a common error where

windows containing only part of the desired n-gram (e.g. a single character of a bigram) are

scored highly. The problem becomes most aggravated when trying to spot n-grams with

double letters. As these errors do not occur at all in unigrams, its mAP is higher. It can

occur more frequently in the trigram case than bigram. We investigated vector comparison

methods other than cosine similarity because of this problem, which is amplified by the fact

that cosine-similarity ignores the network’s predictions of characters not present in the query;

they are multiplied by zero, though they do effect the overall normalization. Cross-entropy

reduces the problem as it directly penalizes false positive character predictions.

We note that QbE seems to be relatively immune to this. It is likely due to the

fuzziness of the query vector.

It is interesting that the best QbE performance is achieved with the original PHOC

vector. While it is not totally clear why this is the case, we believe it is because a query

based on an image is able to more richly describe the word visually with the larger PHOC

vector. In an n-gram, different characters have different widths, meaning the location of each

character in one trigram is slightly different than another trigram. While QbS cannot capture

this, QbE with a large enough PHOC vector can.

In Section 4.1.3 we explained how we found the window sizes we used. We show

in Figure 4.6 the change in mAP as the window size varies for some selected n-grams; an

example word image with some windows of varying sizes can be seen in Figure 4.5 to help the
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Figure 4.5: This shows a word image with windows of various widths: 200-red, 150-green,
100-blue, 50-yellow, 25-cyan.

Figure 4.6: These show QbS mAP for 18 n-grams on the Bentham dataset for varying sliding
window sizes (in pixels). Figure 4.5 shows examples of some windows sizes.
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reader get a relative estimation of what the window sizes are. As can be seen by the peaks

in the data, performance can be dependent on having an optimal window size. We cannot

assume however that this is simply because the n-grams are becoming fully enclosed in the

window; for example, the n-gram “ery” (maroon x) has two approximately equal peaks for

widths 100 pixels apart. Simply measuring the width of the n-grams may yield non-optimal

window sizes; we must test the actual performance as done in Section 4.1.3.

In Figures 4.7, 4.8, 4.9 and 4.10 we show, for the Bentham and Census Names datasets,

the average precision of n-grams individually, arranged in descending order of frequency.

While there is a general trend of more frequent n-grams being spotted better, there is a wide

variance indicating that the distinctiveness of character shape likely plays an important role.

We note that many less frequent trigrams are spotted with perfect precision or very poor

precision. This is because of the all-or-none effect. There are so few instances (e.g. 4) that

with a little bit of luck they can all end up with the top scores or all end up with poor scores.

4.2.3 Respotting Subwords

We had hoped to use approved spottings as new exemplars for an iterative CAT (computer

assisted transcription) system. To verify the validity of this approach we created an experiment

where we continually refine spotting results by spotting with new exemplars and merging the

results (see Section 4.1.5). We use the original PHOC vector with cosine similarity, as that

achieved the best QbE. We show the mAP at each iteration out to 50 iterations in Figures

4.11, 4.12, and 4.13, for uni-, bi-, and trigrams respectively on the Bentham dataset. The

first exemplar for an n-gram was selected as the middle score of positive instances from a

QbS spotting. The following exemplars were the middle score of the previous QbE spotting’s

positive instances. We chose to do this as there is a variety of qualities of exemplar images.

Taking the middle score should roughly give middle quality. The overall quality of mAP is

higher in these experiments as we only used n-grams which occur at least 100 times, which

tend to be the easier instances. We can see that the iterative refinement leads to better
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(a) Unigrams

(b) Bigrams

Figure 4.7: Results for QbS unigram and bigram spotting on the Bentham dataset. N-grams
are arranged in descending order of frequency in the test set.
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Figure 4.8: Results for QbS trigram spotting on the Bentham dataset. N-grams are arranged
in descending order of frequency in the test set.
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(a) Unigrams

(b) Bigrams

Figure 4.9: Results for QbS unigram and bigram spotting on the Census Names dataset.
N-grams are arranged in descending order of frequency in the test set.
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Figure 4.10: Results for QbS trigram spotting on the Census Names dataset. N-grams are
arranged in descending order of frequency in the test set.
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Figure 4.11: Unigram mAP when spotting results of consecutive image queries are merged
(blue). The red line represents QbS performance and the yellow the average performance
of all 50 QbE queries. While merged QbE spotting performs better than individual QbE
spotting, it still is below QbS.

results compared to the average of all the QbE scores for the individual 50 queries, except in

the case of trigrams. However, for all n-grams, the best QbE results are worse than QbS; we

do not include QbE as part of our CAT system.
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Figure 4.12: Bigram mAP when spotting results of consecutive image queries are merged
(blue). The red line represents QbS performance and the yellow the average performance
of all 50 QbE queries. While merged QbE spotting performs better than individual QbE
spotting, it still is below QbS

Figure 4.13: Trigram mAP when spotting results of consecutive image queries are merged
(blue). The red line represents QbS performance and the yellow the average performance of
all 50 QbE queries. Merged QbE spotting performs worse than individual QbE, indicating
the merging may be sensitive to particularly bad spottings or queries.
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Chapter 5

Applications of Subword Spotting

In this chapter we explain two applications of subword spotting: assisting persons

manually transcribing document images, and suffix spotting. We explore using subword

spotting to transcribe in the next chapter.

5.1 Manual Transcription Assistant

Frequently when a person is transcribing a handwritten document, they come across a

handwritten word they do not recognize. A common solution is to scan the document for

similar shapes which are present in the difficult word. If the transcriber can find the same

letters, written by the same author, in the context of a word they do recognize, the transcriber

can identify the letters, thus aiding in the transcription of a difficult word. However, the same

letters may be time consuming to find due to the density of the document and rarity of the

characters. QbE subword spotting provides a way to automate this scanning task. The user

only needs to select the portion of the difficult word they wish to query with, and the system

can return a ranked list of results. We are able to achieve real-time results over a handful of

pages by using word segmentations and pre-computing PHOC vectors for a set of reasonable

window sizes at 16 pixel stride. We snap users’ queries to the closest pre-computed window.

Figure 5.1 demonstrates how the assistant works. First the unrecognized characters

are selected (a), in this case a “G”, and the bounding box is snapped to the precomputed one.

This PHOC vector is compared against all others of the same window size. The ranked list is

shown to the user both as a list (c) and by highlighting the results with the color intensity
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Figure 5.1: Transcription assistance using subword spotting. (a) The user selects an unknown
character (“G”, red box) to search the documents. (b) The results of a QbE search are
displayed, strength of highlight relative to spotting score. (c) A ranked list of matches is
shown (best match at top). The user selects another instance to refine the results (blue
arrow). (d) Combined QbE results. Exemplars are highlighted in blue. (e) Ranked combined
results, a more common word, “Grace” (red arrow), has moved up to a more visible position.
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Figure 5.2: Demonstrating spotting results for four different positions of the threshold slider
shown below each image. The red box is the query.

representing the strength of the match (b). Suppose that the top results aren’t words the

user is familiar with, but the user recognizes the “G” in the first result (blue arrow, “Gash”).

By selecting it, the system performs a QbE search, combining the results with that of the

original query using the method described in Section 4.1.5. In the combined results (e) the

word “Grace” (a more recognizable word) has moved to the third spot.

Figure 5.1 shows the strength of spottings as the strength of the highlight. However,

a more interactive means of accomplishing this is a user defined threshold. The user then

can slide the threshold until the results they want appear. An example of this is shown in

Figure 5.2.

This assistant system is a proof of concept and no formal testing was done with it. Its

performance is directly related to the QbE performance reported in Table 4.2.

5.2 Suffix Spotting

Word spotting is a technique that can be used to find certain words in a corpus of handwritten

documents. However, there are certain situations where one may want to search for a partial

word, such as a prefix or suffix. For example, if one wanted to find names of towns in a

corpus of German documents, spotting words with the suffix “-berg” should return many

town names.

We identified a list of 41 suffixes and evaluate spotting the suffixes present from this

list in the IAM and Census Names dataset. The window size for a given suffix query is found

by identifying all n-grams we have window estimates for (see Section 4.1.3) which compose
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Figure 5.3: Suffix spotting AP of individual suffixes for the IAM dataset. Arranged in
descending order of frequency in test set.

the query, and averaging their window widths according to which characters they contribute

to. We are able to make the assumption that the spottings only occur at the end of the word,

which reduces the number of possible subwindows significantly. We additionally don’t need

to consider window overlap in our evaluation as the goal is whole word retrieval.

We evaluate QbS suffix spotting on the IAM and Census Names datasets as these

have a reasonable number of instances of our suffixes. We achieved a mAP of 0.583 for the

IAM dataset and a mAP of 0.484 for the Census Names dataset. We show the AP for the

suffixes individually in Figures 5.3 and 5.4. For the IAM dataset the suffixes occur about

half the time as the whole words, meaning it may not represent subword spotting as well as

the Census Names dataset, which had only one instance of a subword being a whole word

(name).
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Figure 5.4: Suffix spotting AP of individual suffixes for the Census Names dataset. Arranged
in descending order of frequency in test set.
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Chapter 6

Application of Subword Spotting to Transcription

Subword spotting can also be used to transcribe words. There are several ways one

could do this, but one of the key aspects that makes subword spotting for transcription

appealing is that while subword spotting naturally yields partial transcriptions, a partial

transcription can be constrained to a particular word (full transcription) by matching it

against a lexicon. We aim towards a CAT (computer assisted transcription) model to better

leverage the possibility of user feedback on the steps leading to the full transcription.

We describe four transcription methods in this chapter and the results in the following

chapter. For all methods we used a lexicon. Our primary lexicon consists of 108,028 words

and 6,939 names, as described in Chapter 3.

6.1 Baseline: CAT Through PHOC Vectors

We use a nearest-neighbors approach as a baseline to transcription using our spotting network,

similar to what [12] do for word recognition. The PHOC vectors generated by the network

on word images are compared to the PHOC vectors of the words in our lexicon using a

cosine similarity, and the top N matches from the lexicon are returned. This does not use

subword spotting, and thus provides a baseline for transcription using our PHOCNet-based

architecture.

To compare it to the other CAT methods, we assume a transcription for a word image

is performed by a user selecting the correct transcription from the top seven returned lexicon

words. The seven words correspond with the CAT methods which return a list short enough
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Figure 6.1: An overview of the CAT system which uses approved subword spottings. The
arrows represent the flow of data. (a) Subword spotting is performed. (b) Spotting results
are sorted and distributed as batches. (c) Users classify the spottings. (d) The spottings
are aggregated into a regular expression. This yields a set of possible transcriptions in the
lexicon. These are scored by performing word spotting on the word image. (e) The (reduced)
list of possible transcriptions is sent to a user to select the correct one.

for a user to quickly review. If the correct transcription is not returned in the top seven, it

must be manually transcribed. To be more efficient, we only return a certain portion of the

words to be transcribed in this manner (the remainder needing manual transcription). This

portion is selected by ordering words according to the mean score of the top seven lexical

matches (the words that would be returned).

6.2 CAT Through Approved Subword Spottings

An overview of the CAT system using approved subword spotting can be seen in Figure

6.1. Initially the system spots character n-grams in the corpus of word images (a). These

results are pooled and sent to users in batches (b). After the user identifies correct/incorrect

spottings (c), the spottings’ labels and positions in the word images are used to create regular

expressions which are used to query a lexicon for a list of all words matching the constraints
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set by the spottings (d). These are scored by word spotting each lexically relevant word

in the image, and lower scores are removed from the list (according to an Otsu threshold).

This list is then sent to a user, who selects the correct transcription (e). Information from

approved spottings is used in further spottings.

When there are no more user tasks the system is finished. Words not transcribed will

need to be manually transcribed.

We now go over the individual pieces in greater detail.

6.2.1 Subword Spotting

We follow the same procedure for subword spotting as outlined in Chapter 4. We begin by

spotting the n-grams using QbS. We evenly interleave spotting the n-grams, ordering each n

by frequency order. That is, we order all trigrams, bigrams and unigrams individually by

frequency order, then interleave these three lists such that each list is evenly dispersed among

the resulting list.

We attempted to use QbE after spottings are approved as correct by users. We

combine QbE results as described in Section 4.1.5 when we had a certain threshold of

approved spottings (to ensure stability). However, this did not enhance performance so we

did not include this in our final tests.

To reduce the number of possible n-grams needing approval, we only return the top

portion of all subwindows for a spotting: 75% for unigrams, 25% for bigrams, and 15% for

trigrams. The differing percentages reflect the general frequencies of the n-grams in English.

6.2.2 User Tasks and Interface

The tasks were intended to be able to be completed on smartphones, but the UI was created

as a web app to increase flexibility to more devices. The web app requests new batches

from the server (system), provides a way for the user to complete the tasks, and sends the

completed tasks back to the server.
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There are two user tasks: spotting approval and transcription selection. Spotting

approval is rejecting or accepting subword spotting results presented as a word image with

a highlighted region. Transcription selection is selecting a correct transcription for a given

word image, or correcting spottings displayed on the image.

6.2.2.1 Approval

The task that is presented to users most frequently is spotting approval, as most words will

require multiple character n-grams, and these must be sorted out from false positives. Thus

we considered the most effective way to present these to users to reduce the time spent per

task.

Through some trials, we found presenting the potential n-gram spottings as a list,

grouped by the n-gram label, and having the user classify each instance to be efficient. The

grouping of spottings with the same n-gram label minimizes context switching, and forcing

the user to make a decision about each spotting maintains accuracy.

Figure 6.2 shows the interface. The spottings at the bottom are classified as correct or

incorrect either with a swipe gesture or a button press. The spottings shown above the current

spotting (bottom) allow the user to look ahead and make decisions about the upcoming

spottings. The colors of the highlights change when the n-gram label changes to alert the

user to the change.

6.2.2.2 Transcription Selection

This task’s interface can be seen in Figure 6.3. The user is presented with the image of a

word, in context, with the spotted n-grams highlighted. Below are the n-gram labels, each

with an ‘x’ button so the user can indicate an incorrect spotting. Below these is the list of

possible transcriptions. They are presented in an order according to their word spotting

score, as this frequently places the correct transcription at the top. At the end of this list an
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Figure 6.2: Spotting approval UI. Instance being classified is at the bottom of the interface
(dark border). The desired label “and” is below it. Instances are classified at the bottom and
new instances are added at the top; this allows users to see upcoming instances without their
fingers blocking the screen. The first two instances displayed (from the bottom) are incorrect
and the third is correct. The next label “ing” can be seen above these with its associated
instances above it (two correct instances visible).
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Figure 6.3: Transcription selection UI. Both “her” and “for” have been spotted correctly
in the image. The user can remove spottings if they are incorrect (red ‘x’s). The possible
transcriptions are ordered according to their word spotting score; in many instances this puts
the correct transcription at the top of the list.
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additional “None/Error” button allows the user to indicate that the correct transcription is

not present and the spotting n-grams are correct.

6.2.3 Word Completion / Regular Expression Generation

We rely on the word image width, estimated character width, and the locations of confirmed

spottings (spottings approved by user or threshold) in the word to estimate how many

characters have not been spotted in a word. This allows a regular expression to be generated

which represents all possible transcriptions of that word.

Spottings are estimated to be a width calculated using the process described in Section

4.1.3, but without the clustering. We average these as an approximation of the character

width of an unknown character.

The procedure to create the regular expression is as follows. First we measure the

number of pixels between each confirmed spotting and divide this by the estimated character

width, providing an estimated number of characters (gapWidth)/(charWidth) = ε (with

fractional characters). The range of characters used in the expression is [ ε− 0.8 to ε+ 0.8 ]

(rounded to nearest whole character). The first and last characters are similarly computed,

using the beginning and end of the image boundaries as the previous and next spottings,

but we additionally allow each of those ranges to have one less character than the range

computed to account for the fact that frequently first and last letters are longer than others

(e.g. capital letters at the beginning of a word, or a long tail on the last character of a word).

If spottings overlap by less than 0.15 times the estimated character width, we allow for a

character to possibly be between them. If spottings overlap and share boundary characters,

for example ‘al’ and ‘le’ sharing ‘l’, they could be either ‘alle’ or ‘ale’. However, because

overlap is far more common (‘ale’ case) we choose to always merge the characters. Allowing

both cases causes the resulting regular expression to become bloated and empirically perform

worse. Pseudo code for this process is shown in Algorithm 1.

Once we have the regular expression, we find all matches in our lexicon.
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Algorithm 1: Regular expression generation from spottings

input : spottings for the given word, consisting of the n-gram and boundaries
output : regular expression identifying possible transcriptions

regularExp := “”; /* to return */

foreach spotting do
charsInGap := length of gap to previous spotting or beginning of image / charWidth ;
/* using float division */

if charsInGap > 0 then
minNumOfChars := round(charsInGap −0.8);
maxNumOfChars := round(charsInGap +0.8);
if no previous spotting or no next spotting then

minNumOfChars:= max (minNumOfChars-1,0);
end
regularExp := regularExp + “\w{minNumOfChars,maxNumOfChars }” + current
spotting’s n-gram;

else
if n-gram shares characters with previous n-gram then

regularExp:= regularExp + characters of current spotting’s n-gram not
overlapping with previous;

else
minNumOfChars := 0;
if charsInGap > −0.15 then

maxNumOfChars := 1;
else

maxNumOfChars := 0;
end
regularExp := regularExp + “\w{minNumOfChars,maxNumOfChars }” +
current spotting’s n-gram;

end

end

end
return regularExp;
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If there are no matches there are three possible scenarios: the word is not in the

lexicon, there is an incorrectly approved spotting, or the spottings and unlabeled characters’

count or alignment didn’t transfer to the regular expression properly. To account for the

second scenario, we iteratively try removing individual spottings, regenerating the regular

expression, and re-querying the lexicon to see if matches are found. We make the assumption

that only one spotting will be incorrect and union the matching lexicon results. We first

only remove spottings that have no overlap (overlap meaning two or more spottings have

identified a mutual character) and then those that do. If this fails to yield any lexicon

matches, we try to account for the third scenario by regenerating the regular expression in a

“loose” mode, where each range of unknown characters is expanded by one to allow matches

initially constrained by a bad alignment estimation. If there are no matches and we are

already using the “loose” regular expression we simply skip the word. It will be manually

transcribed eventually.

If there are matches, and less than 49 of them (threshold to mean “not too many”),

we score each possible transcription against the image using word spotting. As the possible

transcriptions are based only on the regular expression, some will be obviously wrong from

a visual point of view (e.g. missing descenders). Following this intuition, we perform an

Otsu threshold on the scores to attempt to discard the obviously wrong possibilties. This

thresholding is only applied if there are more than 5 possibilities, or if the threshold falls less

than half the distance between the highest and lowest score (we’re confident we’re discarding

something poor). If the resulting number of possible transcriptions is less than 7, we package

them into a transcription selection task, ordered by spotting score, and enqueue it for a user

to complete.

This full transcription batch creation process is described in Algorithm 2.
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Algorithm 2: Transcription batch generation

input : spottings and image for the given word
output : transcription batch for word, or no batch

regularExp := Algorithm1(spottings);
possibleWords := matches of regularExp from lexicon
if no words in possibleWords then

foreach spotting that does not overlap with any others do
temporarily remove the spotting;
regularExpTmp := Algorithm1(new spotting set);
possibleWords := possibleWords

⋃
matches of regularExpTmp from lexicon;

end

end
if no words in possibleWords then

foreach spotting that does overlap with others do
temporarily remove the spotting;
regularExpTmp := Algorithm1(new spotting set);
possibleWords := possibleWords

⋃
matches of regularExpTmp from lexicon;

end

end
if no words in possibleWords then

regularExpTmp := Algorithm1(original spotting set), but minNumOfChars and
minNumOfChars always expanded by one;
possibleWords := matches of regularExpTmp from lexicon;

end
if 0 < number of words in possibleWords < 49 then

possibleScores := []; /* empty list */

foreach word w in possibleWords do
possibleScores ← WordSpot(word image, w); /* insert score into

possibleScores */

end
thresholdScore := FindOtsuThreshold(possibleScores);
minScore := minimum score in possibleScores;
maxScore := maximum score in possibleScores;
if number of words in possibleWords > 5 OR minScore +( maxScore − minScore
)/2 < thresholdScore then

possibleWords := PerformThresh(thresholdScore,possibleScores,possibleWords);
end
if number of words in possibleWords < 7 then

return CreateBatch(possibleWords);
end

end
do not return batch;
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6.2.4 Receiving Transcription

The user returns a transcription selection task in one of three ways: with a selected transcrip-

tion, with a spotting marked for removal, or with an error indication (see Section 6.2.2.2).

These are handled in the following ways.

If a transcription was selected, it is stored as the transcription for the word. We

attempted to extract new n-gram image exemplars by interpolating where unspotted n-grams

were in the word image, but these generally failed to be good exemplars so we chose not to

use them.

If a spotting is marked for removal, it is removed and the process described in Section

6.2.3 is followed again, potentially leading to a new task being enqueued.

If the user indicates an error, we first attempt to loosen the regular expression, as

described in Section 6.2.3. If no matching words are found, we remove the “worst” spotting.

The “worst” spotting is any spotting labeled by a threshold (not user oversight). If no

thresholded spottings are present, the “worst” is determined by the worst spotting score.

6.2.5 Batch Distribution

When approving spottings it is a non-trivial task to distribute the spottings to users in an

efficient manner. We would like to maximize the impact of humans efforts, ideally quickly

finding thresholds for each n-gram that can be used to automatically label the remaining

spottings. We tried several approaches to this.

The simplest method is to simply start with the spotting with the lowest score until

the user begins to classify enough as false that we can assume we are at a good thresholding

location to reject the remaining spottings. This has the downside of not looking for a possible

threshold to accept spottings, and every spotting must be approved, which is an inefficiency.

Looking at a graph of true and false spotting instances in Figure 6.4, one can see a

distinction between the true and false spottings. If we can identify the boundary between

them, it would give us a useful tool to create both an accept and reject threshold. In Figure
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Figure 6.4: Histograms of spotting instances for the trigram “and.” The left chart shows the
instances aggregated as well as the fitted parabola. The right chart shows the true and false
spottings separated. Note the clear separation being modeled by the parabola.

6.5 we see that the distribution of false spottings (yellow line) overlaps significantly with the

true spottings (magenta line) making it difficult to distinguish a division boundary when

viewed combined (blue line).

We identify the true/false boundary by the following procedure. We sample the best

scores, those below 13, and perform a least-squares fitting of a parabola to a histogram of the

data (e.g. Figures 6.4 and 6.5). The threshold 13 was heuristically chosen as the peak of the

false distibution occurs higher than 13 (generally). This parabola should roughly match the

curve of the data and is shown as the red line in Figures 6.4 and 6.5. We use the x-position
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Figure 6.5: Histograms of spotting instances for the bigram “ti.” The left chart shows the
instances aggregated as well as the fitted parabola. The right chart shows the true and false
spottings separated. Note that there is no clean division and the parabola’s vertex falls
outside the data range.
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of the vertex to determine where the true/false split is. In a clean split, as in Figure 6.4, we

can see how the parabola matches to two raising distributions, meaning the vertex is a rough

mid-point between them. In a case where there is not clean separation, as in Figure 6.5, the

parabola half matches the data, causing the vertex to be past the data (or at least very near

the minimum score).

While fitting a parabola may seem strange, its simplicity makes it effective. We tried

more complicated methods of modeling the data, but these failed too frequently.

When creating a batch, we select instances starting at the estimated true/false

boundary and alternately select the next instance (ordered by score) on the true and false

sides. Intuitively this means we begin with the instances in which we are least confident

about our classification and work towards those in which we are more confident.

6.2.6 Receiving Spotting Approvals

When user labeling is received, we update running averages of approval for instances of the

true side and false side of the split. If either of these pass a threshold, we accept or reject

all remaining instances on the respective side. We accept remaining true-side instances if

the average approval rate exceeds 0.92. We reject the remaining false-side instances if the

average approval rate falls below 0.75.

For each approved spotting, we add the spotting to the word and execute the procedure

described in Section 6.2.3.

6.3 CAT Through Approved Subword Spottings Using Clustering

The approval of spottings is a bottle-neck for the previous transcription strategy. In [20],

they sped up approval by clustering printed characters together and presenting the user

with a composite of a cluster. While handwriting is too noisy to composite, we follow a

similar method of clustering n-gram spottings together and presenting users with (part of) a

cluster to approve or disapprove. Classifying a group of spottings which belong to the same
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class should take as long as a single instance; the catch is that we don’t know if a group of

spottings is all right or all wrong. It’s likely our clustering is imperfect so that there is a mix.

However, in the case where only a few instances in the cluster are outliers, they should be

quickly identified by a user (see Figures 6.6 and 6.7). This follows the same spirit as the UI

for [5] which also leveraged humans’ ability to quickly identify outliers. In the case where the

cluster is totally mixed (50%/50%) one can classify each instance individually, which is what

was being done in the above method.

In this transcription strategy we use the same method as above, but change how

spotting batches are distributed and don’t use QbE in the same way. We will describe the

steps of this process next.

6.3.1 Clustering

We first perform a dense QbE comparison for the results of each initial n-gram QbS spotting.

This gives us a similarity for all instances. We then perform a hierarchical complete-linkage

agglomerative clustering (two clusters are merged if their two most dissimilar spottings are

more similar than any other cluster pair). We choose a hierarchical method as this allows us

to tune the “purity” of clusters as we receive human feedback. “Purity” is the measure of

how much the clusters are of one class (2 ∗max(T, F )/(T + F )− 1 where T and F are the

count of true or false spottings in the cluster). The initial level in the hierarchy is the first

level where the average cluster size is above 10, which is roughly what we feel an ideal batch

size is.

6.3.2 Spotting Approval Batch Distribution

We evaluated two methods of distributing clusters. One simply takes the cluster with the

next highest average score. The other method attempts to identify good clusters based on

their similarity to approved spottings. To do this we save each approved spotting in a queue.

When finding a new cluster to distribute, we take the next instance off of the queue. We then
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find the cluster that is closest using the complete-linkage metric, that is the cluster where

the instance with the furthest distance from our exemplar is minimized.

In both methods, if a selected cluster is too large (maximum size of 15) we split it

and send each piece as a separate batch.

We have a “purity” goal of 0.9 (roughly 1 or 2 outliers per batch). When our moving

average purity varies from this (over an ε threshold) we move up a level in the hierarchy if

the purity is too high, or move down a level in the hierarchy if the purity is too low. If the

goal were too high (e.g. 1.0), we would quickly move to a level where the clusters are very

small, which would decrease efficiency.

When our moving average accuracy (the portion of instances classified as true by the

user) falls below a threshold (0.4) we stop sending batches for that n-gram.

6.3.3 Spotting Approval UI

Examples of the UI are shown in Figures 6.6 and 6.7. The idea is to allow the user to recognize

whether the majority of the instances are correct or incorrect and then select the outliers.

When a user selects an instance it is darkened. There are two buttons at the bottom which

are used to both indicate the cluster type (correct/incorrect) and that they have selected

all the outliers (they are finished). This is similar to the UI in [5], however, in ours we also

handle the bad cluster scenario.

This is a minimalist interface placing a fair amount of cognitive load onto the user in

exchange for efficiency. One can imagine a slightly simpler interface where the cluster type is

identified as a button prior to a “done” button.

6.4 CAT Through Unassisted Subword Spotting Using Dynamic Time-Warping

Alignment

We want to avoid having to make decisions about spottings, either by thresholding or having

user input, which the previous methods rely on. Thresholding forces a decision between recall
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Figure 6.6: The cluster spotting approval UI with a true cluster. One outlier has been
identified by the user (darkened instance).
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Figure 6.7: The cluster spotting approval UI with a false cluster. No outliers are present, all
instances are incorrect.
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Figure 6.8: An example of a character probability vector for the word “adultery.” The relative
probability of each character (‘a’-‘z’) at each horizontal position is represented both by the
height and color of the graph. The discontinuities occurring at the begining and end of the
word (e.g. see ‘x’) occur due to the merging of unigram, bigram, and trigram scores.
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and precision, and user input is costly. A way to avoid these is to simply merge all spottings

together into a single character probability vector, resulting in something like Figure 6.8, and

then decode this.

The combining happens according to the following procedure, where we process each

n (1, 2, and 3) separately into an independent vector before combining them. Each spotted

n-gram produces a score at each location of the sliding window. For unigrams this gives

us a vector for a relative scoring of a character at each location. For bigrams and trigrams

we can offset these locations and create vectors for each character present in the bigram or

trigram; these are then summed together. Each n-specific character vector is normalized

according to how many n-grams contributed to that character. If a character has had no

n-grams contribute to it, we set it to the minimum value observed.

The individual n-specific character vectors are summed. This summed result has a

soft-max applied to each horizontal position (over characters) to yield the final character

probability vector. There is a little extra work involved given n-grams are spotted at different

window sizes; the full process is detailed in Algorithm 3.

We then use dynamic time warping to score the character probability vectors against

the lexicon words, the lexicon words being converted a series of one-hot character vectors,

one for each character of the word. Similar to the transcription via PHOC method we can

then return the top seven matches to the user to select the correct transcription.
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Algorithm 3: Character probability vector creation

input : word image
output : character probability vector for word

characterSums is a matrix tracking the combine scores for each n and character, indexed
by n, character, position;
characterCounts is a matrix of the same size as characterSums, but tracks how many
spottings contributed at each position;
foreach n in {1, 2, 3} do

foreach n-gram of length n do
PHOCs := DenseSpot(n-gram); /* PHOC vector for each window location

along word image */

foreach position l in n-gram do
character := n-gram [l];
offset := GetOffset (l,n,n-gram); /* Based on estimated character

width and window width */

characterSums [n][character ] := characterSums [n][character ] +
OffsetVector(offset,PHOCs);
characterCounts [n][character ] := characterCounts [n][character
]+OffsetVector(offset,1s); /* 1s is a vector of ones of the size

and position as PHOCs. */

end

end

end
CPV is a matrix the same size as characterSums [n];
foreach character do

foreach horizontal position along the word p do
numContributing := 0;
foreach n in {1, 2, 3} do

if characterCounts [n][character ][p]! = 0 then
numContributing := numContributing +1;
CPV [character ][p] := CPV [character ][p]+characterSums [n][character
][p]/characterCounts [n][character ][p];

end

end
if numContributing == 0 then

CPV [character ][p] := minValue;
else

CPV [character ][p] := CPV [character ][p]/numContributing;
end

end

end
foreach horizontal position along the word p do

CPV [∗][p] := SoftMax(CPV [∗][p]); /* Soft-max occurs across characters */

end
return CPV
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Chapter 7

Evaluation of Transcription Strategies

In this chapter we explain our procedure for testing the transcription strategies

described in the previous chapter. Then we examine the results of these tests.

7.1 Evaluation Method

We evaluate all our transcription strategies as CAT (computer assisted transcription) methods.

However, rather than having users use the systems, we simulate approximate user behavior

using collected statistics. While the statistics may not give results as accurate as a user

study, it allows us to easily compare the performance of different transcription strategies

using consistent timing data.

The statistics were collected from four members of our team using the system. We

collected timing information regarding how quickly they completed batches, whether they

were correct (against the corpus ground truth), as well as information regarding the batch’s

“difficulty.” “Difficulty” being some objective parameter(s) which can effect speed of users

completing the task. For spottings “difficulty” was the size of the batch and the number

of true instances. For transcription selection “difficulty” was the position of the correct

transcription (if present). We fit linear models to predict the time needed to complete a batch

based on its “difficulty.” We also did this for errors. We collected data for both spotting

approval methods (instance and cluster).

In more detail, we measured which “difficulty” measure best modeled the data and used

that. For transcription selection, there is a fixed time predicted if the correct transcription is
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not present, otherwise a linear model based the transcription’s position in the list is used

to predict time. Two fixed values predict the error for the two transcription situations. For

the Bentham dataset, instance spotting approval timing is based on whether the previous

batch is the same n-gram. For the Census Names dataset, instance spotting approval timing

is based on the number of true instances. For both datasets, error is based on the number of

true instances in the batch. For both datasets, cluster spotting approval timing and error is

based on the number of instances in the batch.

We also measured how long it took to manually transcribe line images so we could see

if the CAT actually sped up the transcription process.

To evaluate, we ran each strategy as a CAT system with a single simulated user. When

the simulated user received a batch, it found the correct response and then measured the

probability of error and introduced an error if a random value between [0,1] fell below that

probability. The simulated user then computed the estimated time based on the appropriate

model and waited that long before returning its answer. For many of the transcription

strategies, there comes a point where the strategy must be abandoned and the remaining

words manually transcribed. We terminate our simulations at this point, but report how

much was transcribed.

7.2 Results

We measure the speed of the transcriptions using a words-per-minute metric. This is averaged

over the time of the system running, as it varies significantly during the running for the

spotting approval method. The results are summarized in Table 7.1. In the following

subsections we analyze the results of each method. The results of [37] are included in

Table 7.1, however, it is apparent from the differing manual transcription speeds that our

experimental set ups are too varied to allow a direct comparison.

We note that most methods have better word-error-rate (WER) than manual tran-

scription. This is because all are aided by the lexicon. One can imagine that the manual
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Bentham Census Names
Method Transcribed Words/Min WER Transcribed Words/Min WER
Manual - 24.27 0.073 - 20.92 0.160
[37] manual - 6.28 - - - -
[37] CAT 1.0 14.2 - - - -
PHOC vectors 100% 0.872 24.66 0.021 0.691 11.53 0.070
PHOC vectors 75% 0.687 28.42 0.015 0.531 11.27 0.070
PHOC vectors 50% 0.458 29.22 0.016 0.386 13.88 0.043
CAT through approved subword spottings
Normal UBT 0.588 6.39 0.024 0.354 2.51 0.058
Closest cluster UBT 0.685 2.56 0.019 0.532 1.14 0.075
CAT through unassisted subword spotting using DTW
CPV+DTW UB 0.563 8.74 0.082 0.337 4.17 0.219

Table 7.1: Highlights in the results from simulations. The letters U, B and T represent
whether unigrams, bigrams and/or trigrams were used. The PHOC vector method is the only
method we tested that is able to transcribe words at a rate faster than manual transcription.
We note that [37] reports manual transcription far below the one we collected. This is
probably due to experimental setup. Their CAT system gets almost a 50% speed-up from
their reported manual time.

transcription method could be augmented by showing users close lexical matches to the

word a user is typing. This should make manual transcriptions WER comparable to the

other methods at the cost of some speed as users will spend some time looking at the lexical

matches.

7.2.1 CAT Through PHOC Vectors Results

This baseline result is the only method to surpass manual transcription time, and it only did

so for the Bentham dataset. It does not use subword spotting. We show results in Table 7.1

for three variations where the portion of words actually sent to the user is changed (i.e. we

discard the worst words). As would be expected, decreasing the portion of words sent to the

user has a linear relationship with the portion transcribed, however, the speed does not follow

this linear relationship. This simply means that the order of good transcription selection

batches doesn’t correlate directly to score.

We assume that the speed of this method on the Census Names dataset does not

surpass manual transcription due to the greater variation in the handwriting. In general,
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Bentham Census Names
Method Transcribed Words/Min WER Transcribed Words/Min WER
Normal U 0.121 10.78 0.107 0.130 2.53 0.032
Normal B 0.337 7.28 0.026 0.076 2.53 0.093
Normal UB 0.475 7.78 0.021 0.219 2.53 0.049
Normal BT 0.489 5.67 0.025 0.213 2.54 0.057
Normal UBT 0.588 6.39 0.024 0.354 2.51 0.058
Closest cluster U 0.266 4.93 0.047 0.171 4.17 0.036
Closest cluster BT 0.686 2.55 0.018 0.532 1.16 0.080
Closest cluster UBT 0.685 2.56 0.019 0.532 1.14 0.075
Top cluster U 0.274 5.05 0.050 0.172 4.34 0.033
Top cluster BT 0.693 2.52 0.020 0.529 1.15 0.076
Top cluster UBT 0.689 2.54 0.019 0.530 1.15 0.073

Table 7.2: Results from simulations of CATTSS using user approval on subword spotting
results. The letters U, B and T represent whether unigrams, bigrams and/or trigrams were
used.

humans are typically better at handling variation. Transcription selection batches without

the correct transcription generally take some time to be rejected by users. If the system

presents many of these (due to the difficulty of the handwriting), it makes sense that manual

transcription would be much faster.

7.2.2 CAT Through Approved Subword Spottings Results

We show more detailed results in Table 7.2 for the following three variations of batch

distribution: modeling the “true-false break point” (normal), clusters serving closest-cluster-

next and clusters serving highest-scored-cluster-next. We also experimented with other

methods of distributing batches, however, these outperformed the other approaches. We

don’t show an exhaustive list of n-gram combinations, but show those that both cover a

variety and the best performance.

All of these methods perform far below manual transcription. In the best variation

for the Bentham dataset the simulated user spent 56% of its time approving spottings. The

effort required for the user to supervise the subword spotting represents a large slowdown to

the system’s speed. The Census Names dataset is consistently much slower than the Bentham
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dataset as the handwriting in it is more difficult and thus requires even more user supervision

in approving subword spottings. Additionally, we run into the same slow-down from bad

transcription selection batches described in the previous section.

A page of the testing corpus of the Bentham dataset is show in Figure 7.1 annotated

with the spottings which were approved as well as the transcribed words.

7.2.3 CAT Through Unassisted Subword Spotting Using Dynamic Time-Warping

Alignment Results

In the previous section we saw the subword spotting approval as a major bottleneck. We

removed that bottleneck in this method by aggregating all spottings into character probability

vectors and comparing these directly to our lexicon words using DTW. We see large gains

doing this, but we still fail by a wide margin, to surpass manual transcription speeds. Details

of the results can be seen in Table 7.3. The best results used unigrams and bigrams. These

are the smaller n-grams which give less information per instance, but that isn’t an issue to

this method as it does not require n-gram approval

Given the similarities between this method of using a character probability vector and

the baseline method using PHOC vectors, we think it valuable to describe why this method

performs worse. Both the PHOC vector approach and the subword spotting approach use the

same network. This network was trained on full word images; this means it will generally have

better performance on word images, which the PHOC vector approach uses. Additionally,

there is some ambiguity introduced by the CPV method’s sliding windows, which are not

precise in their localization.

The WER for this method is surprisingly low. This is likely to many transcription

selection batches being served which do not contain the correct transcription. Users often

make the mistake of trusting the system too much and assuming one of the presented words

is correct even if none are.
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Figure 7.1: A page of the Bentham dataset after running the CATTSS system, with subword
spotting approval being distributed using a two-distribution model with only bigrams. Yellow,
pink, and cyan boxes represent, respectively, approved unigram, bigram, and trigram spottings.
The colors are blended when there is overlap. Text below a word represents the transcription
made by the system. We note that some characters missed by the subword spotting tend to
follow trends; e.g. “view” is missed twice in this page. This tends to reflect weaknesses of the
spotting.Nno trigrams are spotted from “view” and the only bigram is ‘ie,’ which has poor
mAP.
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Bentham Census Names
Method Transcribed Words/Min WER Transcribed Words/Min WER
CPV+DTW U 0.570 8.55 0.080 0.325 3.98 0.219
CPV+DTW UB 0.563 8.74 0.082 0.337 4.17 0.219
CPV+DTW UT 0.428 5.89 0.121 0.285915 3.44 0.274
CPV+DTW UBT 0.489 7.11 0.107 0.318 3.89 0.238

Table 7.3: Results from simulations using character probability vectors derived from subword
spotting results. The letters U, B and T represent whether unigrams, bigrams and/or trigrams
were used.
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Chapter 8

Conclusion

In this thesis we have introduced subword spotting and a method of doing it leveraging

state-of-the-art word spotting techniques. We have presented results of subword spotting

at three granularities (uni-, bi- and trigrams) with two datasets and show it to be a more

challenging task than word spotting. We showed three applications of subword spotting:

manual transcription assisting, suffix spotting and CAT (computer assisted transcription).

We now summarize what we feel our contributions are with this work and then discuss

potential future work.

8.1 Contributions

Our primary contribution is the exploration of subword spotting, a previously unexamined

area. We have shown that while word spotting has achieved good results with modern

techniques, applying similar techniques to subword spotting does not yield as precise of

results. Some insights from our subword spotting experiments that we feel are important are

that size estimation of subwords is important if using a sliding window and that the number

of characters in a subword and its frequency in the data set does not directly correlate with

the precision with which it can be spotted.

A further contribution is our exploration of a few applications of subword spotting.

We show how QbE subword spotting can be used to assist people manually transcribing

documents by helping locate instances of unknown characters. We feel subword spotting is

a good fit for this task as a person may want to search for a group of characters together,
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or may not even recognize where character boundaries are. We evaluate the performance of

subword spotting when applied to the task of suffix spotting. These searches can achieve

results not readily available with word spotting and, as discussed in the next section, can

be extended to even more customizable searches. We attempt to apply subword spotting to

CAT, but fail to achieve usable results. However, the method has potential given adjustments

discussed in the next section.

8.2 Future Work

Several things can potentially improve the subword spotting. We did not perform any

preprocessing. State-of-the-art word spotting methods do not deslant word images. However,

for subword spotting, deslanting the word images could make localization better as rectangular

windows could capture characters without clipping or including adjacent characters. While

we attempted to refine the localization of individual spotting results, we did not have success.

However, there may be a refinement method we did not try which would succeed.

Everything we did in this work was based on word segmentation. However, it would

not be difficult to extend what we have done to a segmentation-free scenario. One would

need to be able to distinguish the situation of letters having a space between them, but after

this the extension should be straightforward.

While we aggregated spottings into regular expressions, an extension of suffix spotting

would be regular expression spotting. That is, the user supplies a regular expression and

the system returns all word images which match the expression. With some work, subword

spotting should be able to achieve this. One could spot all n-grams in the expression and

then use the structure of the expression to aggregate the scores according to their spatial

relationships.

Our CAT strategies were not successful, and if they were they would need to be

competitive with modern automatic handwriting recognition methods (CNN+RNN) to be

applicable. However, there is a slightly different application our method has the potential
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to work in. Both our spotting method (PHOCNet) and modern automatic handwriting

recognition methods (CNN+RNN) require training data from a corpus before they can begin

to work effectively. In a real work-flow this will be a part of the corpus that must be manually

transcribed. However, given an effective QbE subword spotting method that does not require

corpus specific training, the CATTSS methods described in Chapter 6 should work with a

few adjustments. Rather than the system initially spotting a set of n-grams, a user would

need to crop a few from the corpus to seed the system. After this, however, it should be able

to proceed as outlined in Chapter 6. The key is that the untrained QbE spotting method

must be better than the QbS spotting we have demonstrated. Currently such a method does

not exist.
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Chapter 9

Appendix

Bentham Census Names
n-gram Spotting width Predicted width Spotting width Predicted width
a 44 39 20 22
b 32 34 40 31
c 44 32 56 40
d 56 46 28 31
e 64 43 20 21
f 32 30 28 28
g 32 30 44 35
h 56 41 44 36
i 96 61 60 38
j 96 62 56 37
k 64 52 40 32
l 44 35 28 24
m 44 49 56 48
n 56 47 20 24
o 32 27 60 40
p 64 51 44 34
q 84 62 60 44
r 32 32 28 23
s 32 32 20 21
t 56 41 44 31
u 64 52 56 40
v 96 64 28 25
w 56 49 56 43
x 96 68 56 38
y 32 31 40 30
z 84 57 60 39
ac 56 57 56 50
ad 56 63 40 47
ai 44 49 60 50
al 64 63 28 38
an 44 58 40 44
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ar 44 54 40 41
as 44 53 40 41
at 64 63 60 53
be 44 50 56 48
ca 56 57 44 48
ce 32 43 40 38
ch 44 47 44 49
co 56 53 40 41
ct 32 43 44 42
de 64 61 40 41
di 64 59 28 38
ea 44 51 20 31
ec 44 49 44 42
ed 56 59 28 39
ee 72 61 84 57
el 64 55 28 32
em 84 81 56 56
en 56 58 40 40
er 44 48 40 38
es 32 43 28 33
et 44 45 28 32
fo 56 55 84 63
ge 56 55 40 42
ha 56 60 20 36
he 56 56 40 40
hi 56 54 56 47
ho 32 44 44 45
ic 32 39 84 59
ie 32 41 20 26
il 32 39 60 49
im 44 61 60 57
in 64 60 20 31
io 84 68 28 33
is 32 43 20 28
it 32 41 28 31
la 32 47 20 32
le 56 53 28 34
li 56 49 44 39
ll 56 51 28 33
lo 44 46 20 29
ly 44 51 28 38
ma 96 93 56 60
me 72 79 40 46
mi 84 81 72 65
mo 72 80 40 49
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na 84 80 40 46
nc 44 55 60 55
nd 44 61 44 50
ne 72 70 20 32
ng 44 59 56 55
ni 64 64 56 49
no 64 66 20 33
ns 64 63 56 52
nt 32 48 28 37
of 96 77 84 63
ol 56 52 44 41
om 32 58 56 57
on 56 60 28 39
or 32 45 28 33
ot 44 48 20 29
ou 32 47 84 62
ow 84 76 84 67
pa 32 51 56 50
pe 32 49 60 53
po 44 56 28 38
pr 44 54 44 45
ra 64 60 28 37
re 56 54 20 28
ri 56 52 20 27
ro 44 49 56 47
rs 44 50 20 30
rt 44 46 20 28
se 32 45 40 37
sh 56 55 56 50
si 32 41 56 44
so 44 49 20 30
ss 72 66 44 43
st 32 45 28 36
ta 44 51 20 31
te 56 53 60 48
th 44 50 56 51
ti 32 39 56 45
to 72 64 40 37
tr 32 42 20 28
ts 44 49 28 34
ul 32 48 28 38
un 56 63 44 48
ur 32 49 40 41
us 44 56 72 59
ut 32 48 20 31
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ve 32 47 20 30
wa 64 70 40 47
we 64 70 20 36
wh 72 76 20 41
wi 64 68 28 39
abl 132 109 40 55
abo 64 77 68 69
ace 72 79 68 65
ach 96 92 84 79
act 72 79 68 66
ade 84 87 68 70
age 108 99 40 54
ain 96 96 56 59
ake 108 101 56 62
ali 64 72 56 57
all 132 104 72 69
als 64 77 68 65
ame 108 116 96 90
anc 84 90 72 73
and 84 98 44 64
ang 84 92 72 75
ans 84 94 84 78
ant 64 80 84 79
any 72 90 72 73
app 108 108 68 71
ard 84 88 40 56
are 84 83 60 60
ari 64 73 56 55
art 96 91 84 74
ary 72 83 56 59
ase 72 79 68 64
ass 108 99 68 67
ast 84 87 68 64
ate 96 90 60 61
ati 64 74 60 60
att 64 74 84 72
ave 84 87 96 82
ber 84 82 72 67
ble 64 73 96 81
but 84 90 68 68
cal 84 83 68 67
can 64 80 72 73
cat 64 73 72 69
cen 64 76 40 54
ces 64 71 60 63
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cha 84 84 72 75
che 72 76 40 54
chi 108 94 68 66
cia 108 93 68 64
com 108 106 72 78
con 64 76 40 55
cou 64 75 68 67
cti 64 67 60 59
ded 84 93 72 73
den 64 82 40 57
der 72 82 40 52
des 64 77 68 67
din 108 100 40 56
dis 72 79 68 66
duc 132 120 72 74
ead 64 79 68 70
ear 64 75 44 52
eas 64 75 68 64
eat 72 80 84 70
eco 84 78 60 61
ect 84 81 60 61
een 84 86 96 81
eir 84 77 60 55
ell 84 80 84 72
ely 84 84 60 62
eme 132 116 68 72
enc 84 86 60 66
end 84 94 68 72
ene 72 80 56 59
ens 84 90 68 67
ent 84 86 68 64
era 64 77 60 61
ere 72 75 56 52
eri 84 77 96 75
ern 108 101 84 71
ers 72 78 56 54
ert 64 71 40 47
ery 108 95 60 61
ese 64 71 60 58
ess 84 81 68 64
est 72 75 72 64
eve 96 91 40 48
exp 132 117 60 62
fer 64 72 68 64
ffe 108 98 68 70
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fic 96 84 68 66
for 64 72 96 80
fro 84 80 68 65
gen 96 96 68 70
ght 84 86 68 70
gra 64 78 84 78
gre 72 80 96 81
had 84 92 72 77
han 84 93 72 77
har 160 129 56 63
has 64 78 68 71
hat 72 80 60 65
hav 96 96 68 72
hea 84 88 56 62
hei 160 122 40 50
hem 72 92 72 79
hen 108 103 96 82
her 96 87 84 73
hes 160 118 44 57
hey 64 76 56 60
hic 160 116 68 66
hin 160 123 40 55
his 72 76 68 64
hou 84 86 84 75
how 64 83 84 84
ial 64 72 60 61
ica 84 81 68 64
ice 64 67 72 64
ich 64 70 40 53
ide 72 77 60 63
ien 96 88 60 62
ies 64 69 60 57
igh 64 74 72 70
ill 64 68 84 71
ime 96 102 68 70
imp 108 110 72 76
ina 84 88 56 59
inc 84 86 60 63
ind 84 90 44 60
ine 64 74 40 50
ing 64 78 44 58
ini 84 84 96 77
ins 64 76 44 56
int 72 80 40 50
ion 84 85 60 63
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ire 64 69 60 55
ish 84 82 68 64
ist 64 69 60 58
ite 64 68 60 55
ith 64 70 56 58
iti 108 88 56 52
its 64 69 60 58
ity 72 76 60 60
ive 72 77 40 47
kin 108 106 96 85
lan 72 86 56 61
lar 64 75 68 65
lat 64 74 40 51
lea 72 80 96 80
led 64 75 40 53
les 72 75 40 49
lic 64 67 96 75
lin 96 88 56 59
lit 64 68 40 46
lle 132 106 40 48
lly 132 108 68 64
low 96 99 44 60
man 96 110 96 91
mar 64 91 84 83
mat 84 102 96 91
men 160 142 72 79
mer 84 97 96 87
min 108 110 84 81
mon 108 113 44 67
mor 84 95 40 58
mpl 108 114 72 79
nal 96 98 72 73
nat 96 96 40 55
nce 84 88 40 54
nde 132 118 84 79
ndi 160 126 68 70
ned 108 108 68 72
ner 72 83 72 67
nes 96 96 56 59
nge 72 86 68 70
nin 132 119 96 85
not 84 89 68 65
now 96 105 72 76
nsi 72 80 68 64
nst 84 86 68 67
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nta 84 92 68 69
nte 64 78 84 71
nti 160 120 60 62
ntr 64 77 68 64
nts 84 86 68 67
ome 84 98 72 73
omm 160 146 84 90
omp 132 126 72 79
ona 84 93 60 65
ond 64 82 72 73
one 72 83 84 74
ong 64 82 68 71
ons 64 78 68 67
ont 64 77 40 52
ope 72 80 40 50
ord 96 95 44 55
ore 72 77 60 59
orm 84 99 72 74
ort 64 73 60 58
ose 64 72 60 59
ost 64 74 60 59
oth 64 75 96 82
oug 64 79 40 55
oul 64 77 68 64
oun 132 120 56 63
our 72 80 60 63
ous 64 77 44 56
out 64 75 60 63
ove 64 74 60 61
owe 160 131 56 63
own 132 121 84 84
par 84 89 72 69
pec 96 91 68 65
per 84 85 72 66
pla 108 102 68 67
ple 108 96 40 50
por 84 89 60 63
pos 72 82 56 58
pre 72 81 40 50
pri 64 77 40 49
pro 84 85 60 61
rac 96 88 68 66
ral 96 91 56 57
ran 72 85 96 85
rat 72 79 60 62
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rea 64 75 56 58
rec 84 80 60 61
red 96 90 40 52
ree 108 99 60 56
rel 132 101 96 73
ren 96 93 44 53
res 84 82 68 62
ric 160 120 72 64
rie 108 91 40 45
rin 160 119 84 74
ris 132 102 40 47
rit 96 87 84 66
rom 108 107 72 74
rou 64 76 60 63
rti 72 73 60 55
sed 84 89 68 67
see 108 95 72 66
sel 84 79 84 73
sen 64 78 84 75
ser 72 76 96 74
ses 64 75 60 61
she 72 78 68 66
sho 84 82 68 67
sin 72 82 68 64
sio 64 70 60 58
sit 64 69 60 58
som 96 102 40 60
son 84 90 96 82
spe 64 77 56 59
sse 132 107 60 61
ssi 132 111 60 59
sta 72 79 96 78
ste 108 93 96 74
sti 72 75 44 51
sto 84 82 44 51
str 64 72 56 55
sur 64 77 40 52
tai 84 82 60 60
tal 72 80 40 51
tan 64 80 68 69
tat 72 80 60 62
ted 64 75 68 65
ten 72 80 68 64
ter 64 71 44 51
tes 72 77 60 59
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tha 72 80 68 69
the 64 72 68 65
thi 72 74 60 62
tho 72 77 72 68
tic 64 67 60 59
tim 84 94 68 71
tin 64 74 40 50
tio 132 98 60 56
tiv 108 93 60 58
tor 64 71 60 58
tra 84 87 40 50
tri 64 71 56 54
tte 132 110 96 77
tur 108 96 60 62
ual 84 91 68 67
uch 64 77 72 73
ugh 64 81 72 77
uld 72 86 68 71
und 96 101 72 77
uni 84 91 68 67
unt 96 95 40 55
ure 96 94 60 61
use 72 80 40 51
ust 64 78 44 56
ven 64 80 72 69
ver 64 74 72 65
was 64 86 72 76
wer 96 95 68 69
whe 84 95 40 59
whi 96 97 72 74
who 72 89 72 77
wil 96 96 72 70
wit 96 92 68 67
wor 108 106 68 70
you 96 93 84 74

Table 9.1: Optimal sliding window widths for spotting and estimated visual widths for each
n-gram of interest.
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[28] N. Serrano, A. Giménez, J. Civera, A. Sanchis, and A. Juan. Interactive handwriting

recognition with limited user effort. International Journal on Document Analysis and

Recognition (IJDAR), 17(1):47–59, 2014.

[29] R. Shekhar and C.V. Jawahar. Word image retrieval using bag of visual words. In

Proceedings of 10th Interational Workshop on Document Analysis Systems (DAS). IEEE,

2012.

[30] S. Sudholt and G.A. Fink. Phocnet: A deep convolutional neural network for word

spotting in handwritten documents. In Proceedings of the 15th International Conference

on Frontiers in Handwriting Recognition (ICFHR). IEEE, 2016.

90



www.manaraa.com

[31] S. Sudholt and G.A. Fink. Evaluating word string embeddings and loss functions for cnn-

based word spotting. In Proceedings of the 14th International Conference on Document

Analysis and Recognition (ICDAR). IEEE, 2017.

[32] A. Toselli, V. Romero, M. Pastor, , and E. Vidal. Multimodal interactive transcription

of text images. Pattern Recognition, 43(5):1814–1825, 2010.

[33] A.H. Toselli, V. Romero, L. Rodriguez, and E. Vidal. Computer assisted transcription

of handwritten text images. In Proceedings of the 9th International Conference on

Document Analysis and Recognition (ICDAR). IEEE, 2007.

[34] A.H. Toselli, V. Romero, and E. Vidal. Computer assisted transcription of text images

and multimodal interaction. In Machine Learning for Multimodal Interaction, volume

5237 of Lecture Notes in Computer Science, pages 296–308. Springer, 2008.

[35] C. Wigington, S. Stewart, B. Davis, and W. Barrett. Data augmentation for recognition

of handwritten words and lines using a cnn-lstm network. In Proceedings of the 14th

International Conference on Document Analysis and Recognition (ICDAR). IEEE, 2017.

[36] T. Wilkinson, J. Lindström, and A. Brun. Neural ctrl-f: Segmentation-free query-

by-string word spotting in handwritten manuscript collections. arXiv preprint

arXiv:1703.07645, 2017.

[37] K. Zagoris, I. Pratikakis, and B. Gatos. A framework for efficient transcription of

historical documents using keyword spotting. In Proceedings of the 3rd International

Workshop on Historical Document Imaging and Processing (HIP). ACM, 2015.

91


